Data Skeptic: Fake News

Data Ethics

 This week, Kyle interviews Scott Nestler on the topic of Data Ethics. Today, no ubiquitous, formal ethical protocol exists for data science, although some have been proposed. One example is the INFORMS Ethics Guidelines. Guidelines like this are rather informal compared to other professions, like the Hippocratic Oath. Yet not every profession requires such a formal commitment. In this episode, Scott shares his perspective on a variety of ethical questions specific to data and analytics. ... [more]

Drug Discovery with Machine Learning

In today\'s episode, Kyle chats with Alexander Zhebrak, CTO of Insilico Medicine, Inc. Insilico self describes as artificial intelligence for drug discovery, biomarker development, and aging research. The conversation in this episode explores the ways in which machine learning, in particular, deep learning, is contributing to the advancement of drug discovery. This happens not just through research but also through software development. Insilico works on data pipelines and tools like MOSES, a benchmarking platform to support research on machine learning for drug discovery. The MOSES platform provides a standardized benchmarking dataset, a set of open-sourced models with unified implementation, and metrics to evaluate and assess their performance. ... [more]

Escaping the Rabbit Hole

Kyle interviews Mick West, author of Escaping the Rabbit Hole: How to Debunk Conspiracy Theories Using Facts, Logic, and Respect about the nature of conspiracy theories, the people that believe them, and how to help people escape the belief in false information. Mick is also the creator of The discussion explores conspiracies like chemtrails, 9/11 conspiracy theories, JFK assassination theories, and the flat Earth theory. We live in a complex world in which no person can have a sufficient understanding of all topics. It\'s only natural that some percentage of people will eventually adopt fringe beliefs. In this book, Mick provides a fantastic guide to helping individuals who have fallen into a rabbit hole of pseudo-science or fake news. ... [more]

Theorem Provers

Fake news attempts to lead readers/listeners/viewers to conclusions that are not descriptions of reality.  They do this most often by presenting false premises, but sometimes by presenting flawed logic. An argument is only sound and valid if the conclusions are drawn directly from all the state premises, and if there exists a path of logical reasoning leading from those premises to the conclusion. While creating a theorem does feel to most mathematicians as a creative act of discovery, some theorems have been proven using nothing more than search.  All the "rules" of logic (like modus ponens) can be encoded into a computer program.  That program can start from the premises, applying various combinations of rules to inference new information, and check to see if the program has inference the desired conclusion or its negation.  This does seem like a mechanical process when painted in this light.  However, several challenges exist preventing any theorem prover from instantly solving all the open problems in mathematics.  In this episode, we discuss a bit about what those challenges are.   ... [more]

Automated Fact Checking

Fake news can be responded to with fact-checking. However, it\'s easier to create fake news than the fact check it. Full Fact is the UK\'s independent fact-checking organization. In this episode, Kyle interviews Mevan Babakar, head of automated fact-checking at Full Fact. Our discussion talks about the process and challenges in doing fact-checking. Full Fact has been exploring ways in which machine learning can assist in automating parts of the fact-checking process. Progress in areas like this allows journalists to be more effective and rapid in responding to new information. ... [more]

Being Bayesian

This episode explores the root concept of what it is to be Bayesian: describing knowledge of a system probabilistically, having an appropriate prior probability, know how to weigh new evidence, and following Bayes\'s rule to compute the revised distribution. We present this concept in a few different contexts but primarily focus on how our bird Yoshi sends signals about her food preferences. Like many animals, Yoshi is a complex creature whose preferences cannot easily be summarized by a straightforward utility function the way they might in a textbook reinforcement learning problem. Her preferences are sequential, conditional, and evolving. We may not always know what our bird is thinking, but we have some good indicators that give us clues. ... [more]

Detecting Fast Radio Bursts with Deep Learning

Fast radio bursts are an astrophysical phenomenon first observed in 2007. While many observations have been made, science has yet to explain the mechanism for these events. This has led some to ask: could it be a form of extra-terrestrial communication? Probably not. Kyle asks Gerry Zhang who works at the Berkeley SETI Research Center about this possibility and more importantly, about his applications of deep learning to detect fast radio bursts. Radio astronomy captures observations from space which can be converted to a waterfall chart or spectrogram. These data structures can be formatted in a visual way and also make great candidates for applying deep learning to the task of detecting the fast radio bursts. ... [more]

Modeling Fake News

This is our interview with Dorje Brody about his recent paper with David Meier, How to model fake news. This paper uses the tools of communication theory and a sub-topic called filtering theory to describe the mathematical basis for an information channel which can contain fake news.   Thanks to our sponsor Gartner. ... [more]

Single Source of Truth

In mathematics, truth is universal.  In data, truth lies in the where clause of the query. As large organizations have grown to rely on their data more significantly for decision making, a common problem is not being able to agree on what the data is. As the volume and velocity of data grow, challenges emerge in answering questions with precision.  A simple question like "what was the revenue yesterday" could become mired in details.  Did your query account for transactions that haven\'t been finalized?  If I query again later, should I exclude orders that have been returned since the last query?  What time zone should I use?  The list goes on and on. In any large enough organization, you are also likely to find multiple copies if the same data.  Independent systems might record the same information with slight variance.  Sometimes systems will import data from other systems; a process which could become out of sync for several reasons. For any sufficiently large system, answering analytical questions with precision can become a non-trivial challenge.  The business intelligence community aspires to provide a "single source of truth" - one canonical place where data consumers can go to get precise, reliable, and trusted answers to their analytical questions. ... [more]

Cultural Cognition of Scientific Consensus

In this episode, our guest is Dan Kahan about his research into how people consume and interpret science news. In an era of fake news, motivated reasoning, and alternative facts, important questions need to be asked about how people understand new information. Dan is a member of the Cultural Cognition Project at Yale University, a group of scholars interested in studying how cultural values shape public risk perceptions and related policy beliefs. In a paper titled Cultural cognition of scientific consensus, Dan and co-authors Hank Jenkins‐Smith and Donald Braman discuss the "cultural cognition of risk" and establish experimentally that individuals tend to update their beliefs about scientific information through a context of their pre-existing cultural beliefs. In this way, topics such as climate change, nuclear power, and conceal-carry handgun permits often result in people. The findings of this and other studies tell us that on topics such as these, even when people are given proper information about a scientific consensus, individuals still interpret those results through the lens of their pre-existing cultural beliefs. The ‘cultural cognition of risk’ refers to the tendency of individuals to form risk perceptions that are congenial to their values. The study presents both correlational and experimental evidence confirming that cultural cognition shapes individuals’ beliefs about the existence of scientific consensus, and the process by which they form such beliefs, relating to climate change, the disposal of nuclear wastes, and the effect of permitting concealed possession of handguns. The implications of this dynamic for science communication and public policy‐making are discussed. ... [more]

Deep Fakes

Digital videos can be described as sequences of still images and associated audio. Audio is easy to fake. What about video? A video can easily be broken down into a sequence of still images replayed rapidly in sequence. In this context, videos are simply very high dimensional sequences of observations, ripe for input into a machine learning algorithm. The availability of commodity hardware, clever algorithms, and well-designed software to implement those algorithms at scale make it possible to do machine learning on video, but to what end? There are many answers, one interesting approach being the technology called "DeepFakes". The Deep of Deepfakes refers to Deep Learning, and the fake refers to the function of the software - to take a real video of a human being and digitally alter their face to match someone else\'s face. Here are two examples: Barack Obama via Jordan Peele The versatility of Nick Cage This software produces curiously convincing fake videos. Yet, there\'s something slightly off about them. Surely machine learning can be used to determine real from fake... right? Siwei Lyu and his collaborators certainly thought so and demonstrated this idea by identifying a novel, detectable feature which was commonly missing from videos produced by the Deep Fakes software. In this episode, we discuss this use case for deep learning, detecting fake videos, and the threat of fake videos in the future. ... [more]

Fake News Midterm

In this episode, Kyle reviews what we\'ve learned so far in our series on Fake News and talks briefly about where we\'re going next. ... [more]

False Discovery Rates

A false discovery rate (FDR) is a methodology that can be useful when struggling with the problem of multiple comparisons. In any experiment, if the experimenter checks more than one dependent variable, then they are making multiple comparisons. Naturally, if you make enough comparisons, you will eventually find some correlation. Classically, people applied the Bonferroni Correction. In essence, this procedure dictates that you should lower your p-value (raise your standard of evidence) by a specific amount depending on the number of variables you\'re considering. While effective, this methodology is strict about preventing false positives (type i errors). You aren\'t likely to find evidence for a hypothesis that is actually false using Bonferroni. However, your exuberance to avoid type i errors may have introduced some type ii errors. There could be some hypotheses that are actually true, which you did not notice. This episode covers an alternative known as false discovery rates. The essence of this method is to make more specific adjustments to your expectation of what p-value is sufficient evidence.  ... [more]

The Louvain Method for Community Detection

Without getting into definitions, we have an intuitive sense of what a "community" is. The Louvain Method for Community Detection is one of the best known mathematical techniques designed to detect communities. This method requires typical graph data in which people are nodes and edges are their connections. It\'s easy to imagine this data in the context of Facebook or LinkedIn but the technique applies just as well to any other dataset like cellular phone calling records or pen-pals. The Louvain Method provides a means of measuring the strength of any proposed community based on a concept known as Modularity. Modularity is a value in the range  that measure the density of links internal to a community against links external to the community. The quite palatable assumption here is that a genuine community would have members that are strongly interconnected. A community is not necessarily the same thing as a clique; it is not required that all community members know each other. Rather, we simply define a community as a graph structure where the nodes are more connected to each other than connected to people outside the community. It\'s only natural that any person in a community has many connections to people outside that community. The more a community has internal connections over external connections, the stronger that community is considered to be. The Louvain Method elegantly captures this intuitively desirable quality. ... [more]

Algorithmic Detection of Fake News

The scale and frequency with which information can be distributed on social media makes the problem of fake news a rapidly metastasizing issue. To do any content filtering or labeling demands an algorithmic solution. In today\'s episode, Kyle interviews Kai Shu and Mike Tamir about their independent work exploring the use of machine learning to detect fake news. Kai Shu and his co-authors published Fake News Detection on Social Media: A Data Mining Perspective, a research paper which both surveys the existing literature and organizes the structure of the problem in a robust way. Mike Tamir led the development of, a website and Chrome/Firefox plugin which leverages machine learning to try and predict the category of a previously unseen web page, with categories like opinion, wiki, and fake news. ... [more]

Click Through Rates

A Click Through Rate (CTR) is the proportion of clicks to impressions of some item of content shared online. This terminology is most commonly used in digital advertising but applies just as well to content websites might choose to feature on their homepage or in search results. A CTR is intuitively appealing as a metric for optimization. After all, if users are disinterested in some content, under normal circumstances, it\'s reasonable to assume they would ignore the content, rather than clicking on it. On the other hand, the best content is likely to elicit a high CTR as users signal their interest by following the hyperlink. In the advertising world, a website could charge per impression, per click, or per action. Both impression and action based pricing have asymmetrical results for the publisher and advertiser. However, paying per click (CPC based advertising) seems to strike a nice balance. For this and other numeric reasons, many digital advertising mechanisms (such as Google Adwords) use CPC as the payment mechanism. When charging per click, an advertising platform will value a high CTR when selecting which ad to show. As we learned in our episode on Goodhart\'s Law, once a measure is turned into a target, it ceases to be a good measure. While CTR alone does not entirely drive most online advertising algorithms, it does play an important role. Thus, advertisers are incentivized to adopt strategies that maximize CTR. On the surface, this sounds like a great idea: provide internet users what they are looking for, and be awarded with their attention and lower advertising costs. However, one possible unintended consequence of this type of optimization is the creation of ads which are designed solely to generate clicks, regardless of if the users are happy with the page they visit after clicking a link. So, at least in part, websites that optimize for higher CTRs are going to favor content that does a good job getting viewers to click it. Getting a user to view a page is not totally synonymous with getting a user to appreciate the content of a page. The gap between the algorithmic goal and the user experience could be one of the factors that has promoted the creation of fake news. ... [more]

Quality Score

Two weeks ago we discussed click through rates or CTRs and their usefulness and limits as a metric. Today, we discuss a related metric known as quality score. While that phrase has probably been used to mean dozens of different things in different contexts, our discussion focuses around the idea of quality score encountered in Search Engine Marketing (SEM). SEM is the practice of purchasing keyword targeted ads shown to customers using a search engine. Most SEM is managed via an auction mechanism - the advertiser states the price they are willing to pay, and in real time, the search engine will serve users advertisements and charge the advertiser. But how to search engines decide who to show and what price to charge? This is a complicated question requiring a multi-part answer to address completely. In this episode, we focus on one part of that equation, which is the quality score the search engine assigns to the ad in context. This quality score is calculated via several factors including crawling the destination page (also called the landing page) and predicting how applicable the content found there is to the ad itself. ... [more]

The Knowledge Illusion

Kyle interviews Steven Sloman, Professor in the school of Cognitive, Linguistic, and Psychological Sciences at Brown University. Steven is co-author of The Knowledge Illusion: Why We Never Think Alone and Causal Models: How People Think about the World and Its Alternatives. Steven shares his perspective and research into how people process information and what this teaches us about the existence of and belief in fake news. ... [more]

Fake News

This episode kicks off our new theme of "Fake News" with guests Robert Sheaffer and Brad Schwartz. Fake news is a new label for an old idea. For our purposes, we will define fake news information created to deliberately mislead while masquerading as a legitimate, journalistic source of truth. It\'s become a modern topic of discussion as our cultures evolve to the fledgling mechanisms of communication introduced by online platforms. What was the earliest incident of fake news? That\'s a question for which we may never find a satisfying answer. While not the earliest, we present a dramatization of an early example of fake news, which leads us into a discussion with UFO Skeptic Robert Sheaffer. Following that we get into our main interview with Brad Schwartz, author of Broadcast Hysteria: Orson Welles\'s War of the Worlds and the Art of Fake News. ... [more]

Human Detection of Fake News

With publications such as "Prior exposure increases perceived accuracy of fake news", "Lazy, not biased: Susceptibility to partisan fake news is better explained by lack of reasoning than by motivated reasoning", and "The science of fake news", Gordon Pennycook is asking and answering analytical questions about the nature of human intuition and fake news. Gordon appeared on Data Skeptic in 2016 to discuss people\'s ability to recognize pseudo-profound bullshit.  This episode explores his work in fake news. ... [more]

The Spread of Fake News

How does fake news get spread online? Its not just a matter of manipulating search algorithms. The social platforms for sharing play a major role in the distribution of fake news. But how significant of an impact can there be? How significantly can bots influence the spread of fake news? In this episode, Kyle interviews Filippo Menczer, Professor of Computer Science and Informatics. Fil is part of the Observatory on Social Media ([OSoMe][]). OSoMe are the creators of Hoaxy, Botometer, Fakey, and other tools for studying the spread of information on social media. The interview explores these tools and the contributions Bots make to the spread of fake news. ... [more]