Consensus

Consensus

Consensus means many different things in different contexts. It has relevance in distributed systems, database design, and voting algorithms. This season is an exploration of all these areas.

False Consensus
False Consensus

Sami Yousif joins us to discuss the paper The Illusion of Consensus: A Failure to Distinguish Between True and False Consensus. This work empirically explores how individuals evaluate consensus under different experimental conditions reviewing online news articles.

Voting Mechanisms
Voting Mechanisms

Steven Heilman joins us to discuss his paper Designing Stable Elections.

Retraction Watch
Retraction Watch

Ivan Oransky joins us to discuss his work documenting the scientific peer-review process at retractionwatch.com.

 

ACID Compliance
ACID Compliance
Linhda joins Kyle today to talk through A.C.I.D. Compliance (atomicity, consistency, isolation, and durability). The presence of these four components can ensure that a database’s transaction is completed in a timely manner. Kyle uses examples such as google sheets, bank transactions, and even the game rummy cube.   Thanks to this week's sponsors:
  • Monday.com - Their Apps Challenge is underway and available at monday.com/dataskeptic
  • Brilliant - Check out their Quantum Computing Course, I highly recommend it! Other interesting topics I’ve seen are Neural Networks and Logic. Check them out at Brilliant.org/dataskeptic
Distributed Consensus
Distributed Consensus

Computer Science research fellow of Cambridge University, Heidi Howard discusses Paxos, Raft, and distributed consensus in distributed systems alongside with her work “Paxos vs. Raft: Have we reached consensus on distributed consensus?”

Differential Privacy at the US Census
Differential Privacy at the US Census
Simson Garfinkel, Senior Computer Scientist for Confidentiality and Data Access at the US Census Bureau, discusses his work modernizing the Census Bureau disclosure avoidance system from private to public disclosure avoidance techniques using differential privacy. Some of the discussion revolves around the topics in the paper Randomness Concerns When Deploying Differential Privacy.  

WORKS MENTIONED:

Sybil Attacks on Federated Learning
Sybil Attacks on Federated Learning

Clement Fung, a Societal Computing PhD student at Carnegie Mellon University, discusses his research in security of machine learning systems and a defense against targeted sybil-based poisoning called FoolsGold.

Counting Briberies in Elections
Counting Briberies in Elections

Niclas Boehmer, second year PhD student at Berlin Institute of Technology, comes on today to discuss the computational complexity of bribery in elections through the paper “On the Robustness of Winners: Counting Briberies in Elections.”

Face Mask Sentiment Analysis
Face Mask Sentiment Analysis

As the COVID-19 pandemic continues, the public (or at least those with Twitter accounts) are sharing their personal opinions about mask-wearing via Twitter. What does this data tell us about public opinion? How does it vary by demographic? What, if anything, can make people change their minds?

Arrow's Impossibility Theorem
Arrow's Impossibility Theorem

Above all, everyone wants voting to be fair. What does fair mean and how can we measure it? Kenneth Arrow posited a simple set of conditions that one would certainly desire in a voting system. For example, unanimity - if everyone picks candidate A, then A should win!

Alpha Fold
Alpha Fold

Kyle shared some initial reactions to the announcement about Alpha Fold 2's celebrated performance in the CASP14 prediction.  By many accounts, this exciting result means protein folding is now a solved problem.

Byzantine Fault Tolerant Consensus
Byzantine Fault Tolerant Consensus

Byzantine fault tolerance (BFT) is a desirable property in a distributed computing environment. BFT means the system can survive the loss of nodes and nodes becoming unreliable. There are many different protocols for achieving BFT, though not all options can scale to large network sizes.

Earthquake Detection with Crowd-sourced Data
Earthquake Detection with Crowd-sourced Data

Have you ever wanted to hear what an earthquake sounds like? Today on the show we have Omkar Ranadive, Computer Science Masters student at NorthWestern University, who collaborates with Suzan van der Lee, an Earth and Planetary Sciences professor at Northwestern University, on the crowd-sourcing project Earthquake Detective. 

Visual Illusions Deceiving Neural Networks
Visual Illusions Deceiving Neural Networks

Today on the show we have Adrian Martin, a Post-doctoral researcher from the University of Pompeu Fabra in Barcelona, Spain. He comes on the show today to discuss his research from the paper “Convolutional Neural Networks can be Deceived by Visual Illusions.”

Works Mentioned in Paper: “Convolutional Neural Networks can be Decieved by Visual Illusions.” by Alexander Gomez-Villa, Adrian Martin, Javier Vazquez-Corral, and Marcelo Bertalmio

Examples:

Snake Illusions https://www.illusionsindex.org/i/rotating-snakes

Twitter: Alex: @alviur

Adrian: @adriMartin13

Thanks to our sponsor!

Keep your home internet connection safe with Nord VPN! Get 68% off plus a free month at nordvpn.com/dataskeptic  (30-day money-back guarantee!)

Consecutive Votes in Paxos
Consecutive Votes in Paxos

Eil Goldweber, a graduate student at the University of Michigan, comes on today to share his work in applying formal verification to systems and a modification to the Paxos protocol discussed in the paper Significance on Consecutive Ballots in Paxos.

Even Cooperative Chess is Hard
Even Cooperative Chess is Hard

Aside from victory questions like “can black force a checkmate on white in 5 moves?” many novel questions can be asked about a game of chess. Some questions are trivial (e.g. “How many pieces does white have?") while more computationally challenging questions can contribute interesting results in computational complexity theory.

Gerrymandering
Gerrymandering

Brian Brubach, Assistant Professor in the Computer Science Department at Wellesley College, joins us today to discuss his work “Meddling Metrics: the Effects of Measuring and Constraining Partisan Gerrymandering on Voter Incentives".

Automatic Summarization
Automatic Summarization

Maartje ter Hoeve, PhD Student at the University of Amsterdam, joins us today to discuss her research in automated summarization through the paper “What Makes a Good Summary? Reconsidering the Focus of Automatic Summarization.” 

Leaderless Consensus
Leaderless Consensus

Balaji Arun, a PhD Student in the Systems of Software Research Group at Virginia Tech, joins us today to discuss his research of distributed systems through the paper “Taming the Contention in Consensus-based Distributed Systems.” 

Decentralized Information Gathering
Decentralized Information Gathering

Mikko Lauri, Post Doctoral researcher at the University of Hamburg, Germany, comes on the show today to discuss the work Information Gathering in Decentralized POMDPs by Policy Graph Improvements.

Fault Tolerant Distributed Gradient Descent
Fault Tolerant Distributed Gradient Descent

Nirupam Gupta, a Computer Science Post Doctoral Researcher at EDFL University in Switzerland, joins us today to discuss his work “Byzantine Fault-Tolerance in Peer-to-Peer Distributed Gradient-Descent.”